Structure, Scaling, and Performance of Natural Micro- and Nanocomposites
نویسندگان
چکیده
Natural materials boast remarkable mechanical performances in some cases unmatched by their synthetic counterparts, and for this reason, they have become an inspiration for the development of new materials. In highperformance natural materials such as nacre, bone, or teeth, stiffness and toughness are achieved with the staggered microstructure, where stiff inclusions of high aspect ratio are embedded in a softer matrix. While the modulus and strength of the staggered structure is well understood, fracture toughness and scaling remains unclear. In this work, a fracture model based on the fundamental micromechanics of the staggered structure is presented. The model captures crack bridging and process zone toughening, and explicitly shows how these toughening processes are the most efficient with high concentrations of small tablets of high aspect ratio. In particular, a desirable non-steady cracking regime can be achieved with specific requirements for structure and interface properties, which are presented in detail. These attractive toughening mechanisms are only possible if the tablets themselves do not fracture. The benefits of small size have been explored in the past, but here, we show for the first time how the effects of a stress singularity generated by the junctions between the tablets can be alleviated by the softer interfaces, provided that a “soft wrap” condition is met. The models provide new insights into the optimization and scaling of natural and biomimetic composites.
منابع مشابه
Radar Absorption Performance of Fe3O4/AC/PANI Nanocomposites Prepared from Natural Iron Sand
In this work, the Fe3O4 nanoparticles from natural iron sand were combined with active carbon (AC) and polyaniline (PANI) to obtain Fe3O4/AC/PANI nanocomposites with mass variations of the AC of 0.1, 0.2, 0.3, 0.4, and 0.5 g. The crystalline phase of Fe3O4/AC/PANI nanocomposites formed from Fe3O4 with PANI h...
متن کاملRheological, thermal and tensile properties of PE/nanoclay nanocomposites and PE/nanoclay nanocomposite cast films
The effects of three different mixers, two different feeding orders and nanoclay content on the structure development and rheological properties of PE/nanoclay nanocomposite samples were investigated. Fractional Zener and Carreau–Yasuda models were applied to discuss the melt linear viscoelastic properties of the samples. Moreover, scaling law for fractal networks was used to quantify clay disp...
متن کاملLearning from nature: constructing high performance graphene-based nanocomposites
After billions of years of evolution, natural materials, such as bamboo, bone, and nacre, show unique mechanical properties, due to their intrinsic hierarchical micro/nanoscale architecture and abundant interfacial interactions. This relationship between architecture, interfacial interactions, and mechanical properties of natural materials, supplies the inspiration for constructing high perform...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملSynthesis and investigation of structural, optical, and photocatalytic properties of BiFeO3/reduced graphene oxide nanocomposites
This study have been developed BiFeO3/reduced graphene oxide (BFO/RGO) nanocomposites by introduction of RGO in the structure of BFO nanoparticles in a short term ultrasonic treatment. The X-ray diffraction pattern and Fourier-transform infrared spectroscopy analysis reveal that the BFO/RGO composites were successfully synthesized. UV-visible absorption show that the introduction of RGO can eff...
متن کامل